仿生机器人是指模仿生物、从事生物特点工作的机器人。二十一世纪人类将进入老龄化社会,发展“仿人机器人”将弥补年轻劳动力的严重不足,解决老龄化社会的家庭服务和医疗等社会问题,并能开辟新的产业,创造新的就业机会。
仿生机器人体系结构
机器人体系结构,就是指为完成指定目标的一个或几个机器人在信息处理和控制逻辑方面的结构方式。
1、基于功能来分解
基于功能分解的体系结构在人工智能上属于传统的慎思式智能,在结构上体现为串行分布,在执行方式上属于异步执行,即按照“感知一规划一行动”的模式进行信息处理和控制实现。以美国国家航天局和美国国家标准局所提出的NASR人MtI〕为典型代表。这种体系结构的优点是系统的功能明了.层次清晰,实现简单。但是申行的处理方式大大延长了系统对外部事件的响应时间,环境的改变导致必须重新规划,从而降低了执行效率。因此只适合在已知的结构化环境下完成比较复杂的工作。
2、基于行为来分解
基于行为分解的体系结构在人工智能上属于现代的反应式智能,在结构上体现为并行(包容)分布,在执行方式上属于同步执行,即按照“感知一行动”的模式并行进行信息处理和控制。以麻省理工的R.A.Brooks所提出的行为分层的包容式体系结构(SubsumptionArchitecture) 和Arkin提出的基于MotorSc hema的结构为典型代表。其主要优点就是执行时间短、效率高、机动能力强。但是由于缺乏整体的管理,很难适应于各种情况。因此只适用于在沐淘环境下执行比较简单的任务。
3、基于智能分布来分解
基于智能分布的体系结构在人工智能上属于最新的分布式智能,在结构上体现为分散分布,在执行上属于协同执行,既可以单独完成各自的局部问题求解,又能通过协作求解单个或多个全局问题。以基于多智能体的体系结构为典型代表。这种体系结构的优点是既具有“智能分布”的特点,又有统一的协调机制。但是如何在各个智能体之间合理的划分和协调仍然需要大量的研究和实践。该体系结构在许多大型的智能信息处理系统上有着广泛的应用。
除以上三类主要的体系结构之外,还有一些改进的混合式体系结构,如带反馈环节的行为分解模式、基于分布式智能的分层体系结构、基于功能分解的多智能体结构等等。但是从整体上来看,它们或是在功能模块的灵活性和扩展性上不足,或是没能很好的协调慎思式智能与反应式智能,或是各层次间的交流机制不够完善。