KDD2021论文录取结果出炉,深兰自动机器学习论文被接收!

AI世界
关注


实验结果

上面两张表展示了方案在五个公开数据集和五个未公开数据集的结果,这五个数据集涉及不同的领域。

可以看到:

在五个公开数据集上,深兰团队工作的平均得分比第二名高出4.14%,而在五个未公布数据集上,这一数字增加到30.31%;

大多数团队的结果显示不同数据集上的性能不稳定;

在五个公开数据集上表现良好的一些排名靠前的团队(例如Deep_Wisdom和MingLive),无法在五个未公布数据集上获得相似的性能。

所有这些发现都充分证明了论文中提出的,针对时态关系数据的AutoML框架的有效性和鲁棒性,其在所有数据集上均表现出良好且稳定的性能。

模型细节

论文提出的框架由四个自动模块组成,包括:

数据预处理;

表合并;

特征工程;

模型调整;

用于控制模型时间和内存使用的时间记忆控制器。

整个框架结构由下图所示。

3.1 问题定义

时间关系数据通常代表多个关系表,即一个描述有关键ID的时间信息的主表,以及几个包含有关键ID的辅助信息的相关表,其中Key IDs是主表之间的连接列以及相关表格。

时间关系表的示例在下图中显示,其中Key ID这里是User ID和Item ID。

3.2 技术创新

下图描述了多表融合最复杂情况多对多(M-M)情况的处理:表A中的一行可能与表B中的许多行链接在一起,反之亦然。深兰团队根据特征类型(即分类或多分类特征,数字特征或时间特征)合并相关表。例如,对于数字特征和分类特征,团队将相关表中的平均值和众数作为主表中key ids的值。至于时间特征,则将最新时间作为主表的合并值。

为了充分利用表信息并最大程度地减少内存使用量,我们将特征工程划分为四个顺序的模块。对于每个模块,我们使用LightGBM来验证每个特征的有效性并进行功能选择。此处特征工程是通过多个模块递归进行的,在每个模块的开头,都会从主表中生成新功能,然后根据向下采样的子数据集进行功能选择,再从中使用所选功能来更新主表。

LightGBM模型的两个主要超参数是boosting轮数和学习率,其他大多数团队都使用贝叶斯优化进行超参数调整。但是,这种方法需要对整个样本进行多次训练才能获得超参数的性能分布,这在时间上效率低下,尤其是在处理大规模数据集时。不同的是,深兰团队利用先验知识来实现类似包装器的方法,以减少搜索空间。借助采样数据或小规模的boosting回合,即使没有一次完整的模型训练也能快速获得成功的必要先验知识,从而得到预设的学习率和boosting轮数。

3.3 资源控制

模型学习花费了大部分培训时间,在框架中利用集成学习的力量来构建模型。相应地,在给定时间预算的情况下,模型可以自动快速地适应最佳情况。

下图给出了内存控制之前和之后的模型性能示例。可以看到,特征工程中的优化减少了处理时间。通过节省时间,可以将一个新模型自动添加到集成建模中,以获得更好的结果。

总结

在这项工作中,深兰团队为时态关系数据提出了一个高效且自动的机器学习框架AutoSmart,包括自动数据处理、表合并、功能工程和模型调整,并与时间和内存控制单元集成在一起。

实验表明,AutoSmart

可以有效地挖掘有用的信息,并在不同的时间关系数据集上提供一致的出色性能;

可以在时间和内存预算内有效地对给定的数据集进行自我调整;

可扩展到更大比例或某些极端情况(例如,缺失值太多)的数据集。

简而言之,论文中所提出的框架可以在不同情况下实现最佳和稳定的性能。此外,论文代码是公开的,并可以方便地应用于工业应用。




声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存