所以Facebook的机器人手臂做出的那些看似不连贯的动作实际上是一种好奇心,正是这种好奇心可以让机器更容易适应环境。想象一下一个家用机器人正试图填装洗碗机。也许它认为把杯子放在顶部架子上最有效的方法是从侧面拿过来,在这种情况下杯子会碰到架子的边缘。从某种意义上说,这是确定性的:一次又一次的反复尝试,让它走上这条不太理想的道路,在这条道路上,它试图更好地侧向装载,但现在它无法备份并尝试新的东西。另一方面,一个充满好奇心的机器人可以通过实验和学习,了解到从上面进来实际上是最好的方法。它是灵活的,不是决定性的,这在理论上允许它更容易适应动态的人类环境。
模拟无法替代现实
现在,一种更简单、更快捷的教机器人做事的方法是模拟。也就是说,建立一个数字世界,比如说,一个动画棒形人物,让它教自己用同样的试错法运行。这种方法相对较快,因为当数字“机器”不受现实物理定律的约束时,迭代会快得多。
尽管模拟可能更有效,但它并不是真实世界的完美表现——你无法完全模拟动态人类环境的复杂性。因此,尽管研究人员已经能够训练机器人首先在模拟中做一些事情,然后将这些知识传递给现实世界中的机器人,但这种转变极其混乱,因为数字世界和物理世界是不匹配的。
在现实世界中做任何事情可能会更慢、更费力,但从某种意义上来说,你得到的数据更纯粹。Facebook人工智能研究科学家Roberto Calandra说:“如果它在现实世界中有效,那它实际上就是有效的。”如果你在设计极其复杂的机器人,你无法模拟他们将要应对的人类世界的混乱。但它们必须继续生存下去。随着我们给机器人的任务变得越来越复杂,这一点尤为重要。在工厂生产线上提升车门的机器人相对来说很容易编码,但却无法在混乱的家庭中导航。机器人将不得不凭借创造力自行适应,这样它就不会被困在反馈回路中。一个程序员不能对每一个障碍都进行编程。
Facebook的项目是人工智能和机器人完美结合的一部分。传统上,这些世界很大程度上是封闭的。是的,机器人总是需要人工智能来自主操作,就像使用机器视觉来感知世界一样。但是,尽管像谷歌、亚马逊和Facebook这样的科技巨头推动了纯数字环境下人工智能发展的重大进步——让计算机识别图像中的物体,例如,让人类先给这些物体贴上标签——但机器人仍然相当愚笨,因为研究人员一直专注于让物体在不摔倒的情况下移动。
随着人工智能研究人员开始使用机器人作为平台来完善软件算法,这种情况开始改变。例如,Facebook可能想教机器人自己解决一系列任务。这反过来可能会为人工智能助手的发展提供信息,它们可以更好地为你、为用户,计划一系列的行动。“这是同一个问题,”LeCun说。“如果你能在一个环境中解决它,那么你也可以在另一个环境中解决。”
换句话说,人工智能正在使机器人变得更聪明,但是机器人现在也在帮助推进人工智能。“许多与人工智能相关的有趣问题——特别是人工智能的未来,比如我们如何才能达到人类水平的人工智能——目前正由机器人领域的工作人员来解决,”LeCun说。“因为你不能用机器人作弊。你不能让成千上万的人给你贴标签。”
当然,我们仍然有疑问,像Facebook这样的数字巨兽想要机器人做什么?目前,该公司表示这项研究与特定的产品渠道无关。
但是请记住,Facebook从事于人际关系业务(也从事广告销售业务)。“我们认为机器人技术将是其中的一个重要组成部分——想想远程呈现之类的东西,”LeCun说。毕竟,Facebook已经是一家硬件公司,生产了视频会议设备Oculus VR系统和Portal。“这种逻辑上的连续性也许是你可以从远处控制的事情。”
但我们正在超越自己。迄今为止,除了Roomba,每一个家庭机器人都失败了,部分原因是这些机器不够智能或不够有用。是的,没有机器人能够特别聪明,但是,也许Facebook这个挥动的机械臂可以帮助解决这个问题。