AI新贵上位记:图网络是怎么火起来的?

亿欧网 中字

图网络,到底有什么用?

这个问题或许可以分远近两方面看。近的方面,有一些AI要面对的任务,天然就属于图结构数据。因此用图网络来学习和处理可谓事半功倍。比如说社交网络、智能推荐、化学分子预测、知识图谱等领域,都被证明可以广泛应用图网络技术来提升智能化效率,降低算力消耗。

而在非结构化数据,比如语音、文本、图片等场景,图网络可以用来提取结构化信息。比如在图片中更好地识别家庭成员关系,认识图片中正在发生的行为等等。此外,图网络还能为数据的优化组合提供更加智能化的应用。而从长远方面看,图网络是对图谱技术和深度学习技术两个技术领域的融合与再拓展。这不仅让沉睡已久的,AI中的知识表示流派具备了复活的潜力。更重要的因素在于,图网络可能让深度学习打开因果推理这扇大门。

具体一点,作为一种底层逻辑上的更新,图网络似乎可以起到对深度学习几个原生缺点的弥补:

增强AI可解释性。

“臭名昭著”的深度学习黑箱,来自于大量非结构数据输入之后,算法进行归纳的逻辑无从掌握。而图网络可以操作知识的归纳逻辑,看出行为的因果关系,显然对是黑箱性的一次突破。

减少“人工智障”式的视觉错判。

在机器视觉领域,AI另一个广为人知的问题,就是对对抗攻击的低抵抗力。比如AI本来已经认识这是鸟了,结果照片上沾一个黑点,它又不认识了。这个问题来自于AI本身识别的是像素,而不是物体概念本身。图网络如果将物体关系带入其中,或许会让AI的视觉判断力更像人类。

小样本学习的可能性。

深度学习的另一个问题,就是很多算法必须经历超大规模训练来提升精度。而这也是对算力和数据的暴力消耗。如果能让AI具备逻辑上的迁移可能,那么具备人类常识的AI,将可以在很小的数据样本中完成相对复杂的工作。

向着通用智能的一小步。

我们知道,AI今天的主要能力是识别和理解,而推理是其若想。假如图网络弥补了这一弱势,是否意味着AI将从单体智能向通用智能走上一步呢?

这么多价值的图网络,显然想不火都难。2019年,或许将是图网络放出更多光芒的一年。

然而也别太乐观,这个更多光芒完全是个相对值!虽然今天很多声音高调吹捧图网络的价值,但要看到,图网络并不是AI的万能钥匙。

心头一动,道阻且长:如何看待图网络的发展现状?

虽然今天产业端对于图网络的应用还没有怎么被提及,但就我所接触过的AI学术界人士,确实普遍对图网络报以非常强烈的兴趣。

当然了,对图网络的争议今天也普遍存在。整体而言,对它的整体评价分为了三个流派:

悲观派:有一种观点认为,图网络无非是对深度学习劣根性打的一个补丁,属于深度学习走不下去了,打算绕绕路。而且这个补丁并没有被证明有效。今天还只是停留在概念和浅层实验阶段。

客观派认为:图网络是深度学习发展的必然趋势和重要补充,恰恰证明了AI作为一种底层技术正在不断发展成长,拓展自己的边界。不管图网络是不是真的能做到畅想的一切,至少证明了深度学习体系在今天是有发展能力的。

乐观派则提出:图网络的关键意义,是让AI能够获取常识和推理能力,这种能力显然是人类智能的一个重要代表。我们一直期待的AI走向通用化的强人工智能,会不会就从图网络开始呢?在他们看来,图网络是关乎于AI去往下一个时代的关键开关。

到底哪一派更接近未来的真相呢?可能就交给诸位和未来一起检验吧。总体而言,图网络是一种对今天流行的AI体系,从技术思想,到技术逻辑的一次重要修补和升级。它在某种程度上是一个未来,但今天还缺乏实践检验和有效工作。

在实践中,图网络的限制还非常多。比如其表示能力不足,无法承担太复杂的图结构数据。并且对计算复杂度要求很高,对今天的计算架构又提出了新的挑战。而且图网络主要解决的是AI对结构化数据的处理,而在动态数据、大规模数据、非结构化数据等领域,图网络的作为依旧有限。

再一个,虽然AI是一个高度产学一体化的学科,从前瞻性研究到技术实践的周期已经被大大缩短。然而要客观看到,二者并不是无缝对接的,从算法理论提出到实际应用,还是会有一个比较长的蛰伏期。我们不能指望去年的AI学术明星,今年就走进千家万户。总之呢,这是个让人动心的技术,但今天还仅仅是发现了藏宝图。真正的宝藏,大概还在千山万水之外。

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存