在当今云计算超高速发展的时代,机器学习解决方案在改进系统方面取得了指数级的进步。机器学习利用大数据分析和识别模式的能力为当今的企业提供了关键的竞争优势。
机器学习通常与人工智能和深度学习结合使用,使用复杂的统计建模。这些复杂的系统可能在私有云或公共云中运行。在任何情况下,时间的推移都会促进机器学习:随着更多数据被添加到任务中并随着时间的推移进行分析,机器学习会产生更准确的结果。
根据调研机构BCC Research的调查数据,2017年全球机器学习市场规模达到14亿美元。到2022年,估计将达到88亿美元,其复合年增长率(CAGR)高达43.6%。
企业在考虑选择哪个机器学习供应商时,请权衡以下因素:
·主要平台或独立供应商:以下的一些机器学习供应商提供了完整的云计算平台,其他供应商是专门针对机器学习的创业公司。由于没有严格的规则,这些公司可能会更有动力为企业提供服务。
·机器学习类型:机器学习主要应用在零售行业还是医疗保健领域?企业可以询问其潜在供应商在哪些行业投资最多。
·供应商的未来发展方向:在研发和投资方面,供应商在未来几年将关注哪些方向?这个问题的答案可能会帮助企业找到最符合其长期目标的答案。
机器学习环境正在迅速变化。机器学习初创企业不断涌入这个领域。成熟的供应商正在推出各种以某种形式使用机器学习的产品。对选项和选项进行排序可能会让人感到困惑。因此需要根据他们提供的功能、分析师评论、客户推荐和独立研究,确定了机器学习领域的8家顶级供应商提供的解决方案。
(1)Alteryx
Alteryx公司提供统一的平台,可以解决数据、分析和机器学习问题。该供应商致力于通过协作方法在IT、分析专家和业务线之间建立新的和改进的合作伙伴关系,从而最大限度地减少对数据科学家的需求。
该产品提供无代码和代码友好的格式。它使用拖放式工作流界面,并与第三方人口统计、公司和空间数据相关联。该公司被评为Gartner 魔力象限(MQ)的“领导者”。调研机构Gartner公司指出,Alteryx公司正朝着强大的自动化和基于规则的方向迈进。
Alteryx公司提供与众多主要合作伙伴的集成,其中包括Tableau、AWS、Teradata、Microsoft、DataRobot、Salesforce、Oracle、Cloudera和Qlik。机器学习功能具有并行模型分析和预测分析,以及自动化工作流和各种流程的能力。
(2)AWS SageMaker
完全托管的机器学习服务允许数据科学家和开发人员构建和训练机器学习模型,并将其插入应用程序。这可以运行并行模型,进行灵活的分布式培训,并解决A-B测试以及其他任务。
SageMaker是一个完全托管的AWS服务,包括一个集成的Jupyter记事本实例。这有助于深入了解数据源,从而有助于探索和分析。SageMaker提供了一套针对环境优化的算法,它支持专有算法和自定义培训脚本。
Sagemaker还集成了Docker容器和Apache Spark。与AWS一起,可以使用集成的SageMaker控制台快速启动和扩展项目。该平台支持HIPAA法规和其他合规标准。
(3)谷歌机器学习引擎
谷歌云计算机器学习(ML)引擎是一个为开发者和数据科学家设计的完全管理的平台。该产品允许用户使用多个机器学习框架构建高质量模型,其中包括Scikit Learn、XgBoost、Keras和TensorFlow。
这是一个复杂的深度学习框架,支持许多谷歌产品,从谷歌照片到谷歌云语音。它允许用户将机器学习部署到生产中,而无需Docker容器。高度可扩展的环境,这适用于托管集群的培训,并提供了一个自动设计和评估模型体系结构的框架。它旨在适应现有的工作流程,并可扩展以处理批量预测和在线预测要求。
其他主要功能包括:自动资源调配、使用便携式模型、服务器端处理和集成云数据存储。