主要问题
1.问题表现
(1)用力过于集中。从架构上看,人工智能技术可以分为基础层、技术层和应用层。其中基础层是人工智能的核心业态支撑,技术层是人工智能的关联业态,应用层是人工智能的实践外延业态,这三个层次主要包括芯片、算法、智能工业机器人、无人机、语音语义识别、计算机视觉、深度学习和智能硬件等。2017年人工智能领域投融资规模显示,语音语义、计算机视觉市场规模较大,分别为108.7亿元和82.8亿元,占比分别达到45.8%和34.9%,总和占比超过80%,自2015年以来,我国人工智能在汉字识别、语音识别和计算机视觉技术方面世界领先,但在其他细分领域,与国外相比差距明显,特别是芯片、工业机器人、GPU和深度学习算法等关键技术发展较为滞后。
(2)应用偏离场景。有些人工智能企业选择的研发方向无法获得充足的产业实践机会,实际上,我国人工智能科研机构研究与企业实践存在一定程度的脱离,企业往往陷入实践型人才难求的境地。由于研发人员难以与应用端的实践相结合,或者苦于应用场景下数据匮乏、无法数字化等因素制约。如航空智能制造领域,一些老机型甚至没有数模资料,仅有图纸,人工智能技术“巧妇难为无米之炊”,再或者一些军工等涉密领域,准入门槛较高,不能深入场景提供智能化解决方案。目前,我国人工智能的应用领域多处于专用阶段,如人脸识别、视频监控和语音识别等都主要用于完成具体任务,覆盖范围有限,产业化程度有待提高。
(3)技术缺少硬度。部分人工智能企业对于研究和落地方向不确定,没有深入调研市场需求和可介入的应用场景,剑走偏锋、求奇求特,单纯追求研发的“高精尖”,盲目确定研发方向。按照科技部火炬中心《2016中国独角兽企业发展报告》确定的我国人工智能独角兽企业标准(一般估值10亿美元以上),截至2016年底,美国和我国是“独角兽”企业分布最多的两个国家,分别为137家和63家,从两国独角兽企业的数量上可以看出,我国人工智能技术的硬度相比美国有明显差距。
(4)区域发展失衡。截至2017年底,全国88%的人工智能企业聚集在北京、上海、广东和江苏。其中,北京人工智能企业最多,占比39.66%;其次是上海,占比21.55%;位列第三的是广东,占比15.52%。部分地区的人工智能发展方向趋同,产业实践同质,形式化问题严重,缺少地域间错峰产业实践的统筹规划和差异化的产业布局,老少边穷地区基础更加薄弱,无法有效提供产业实践机会,加之缺乏吸引人才的手段和资金支持,没能在区域统筹中充分发挥人工智能辐射行业多、撬动能力强的优势。
2.成因分析
(1)基础因素。我国开展人工智能研究起步晚、起点低,在实现跨越式发展的同时,必须面对科研基础和产业基础双薄弱的现实,人工智能是多学科的综合应用,其发展水平受限于各基础学科发展水平,人工智能产业基础参差不齐。部分产业从手工阶段直接进入智能阶段,跨越了自动化和数字化历程,甚至有些产业刚刚兴起,从无到有、从零开始,数据汇集和产业基础不完整[5]。
(2)资本因素。近年来,创新投资的兴起有效推动了人工智能的发展。由于资本追求投资收益,有退出机制和变现压力,使得在深度产业实践和融合上耐心不够,为抢占市场先机,引导或迫使人工智能企业在产业实践基础不牢的情况下以“摊大饼”的方式盲目扩张。对有需求、变现快的行业更为推崇,对产业基础差、实践周期长的领域反应冷淡。一些人工智能企业和个别地方政府缺乏远大眼光,追求短期的经济效益,期望1-2年内获得明显的经济回报,致使很大一部分人工智能创业企业急功近利、底气不足,遇到资金和产业瓶颈时难以维系。
(3)政策因素。产业实践政策的导向不够明确、缺乏目标规划,政策层面更关注如何提供软环境,缺少应用关注和产业对接,行业指导缺失,鼓励创新创业深入发展的有效举措不多,如技术加场景的合作模式中有许多是高校和企业对接,开展专项课题研究,由于高校教师更关注理论研究成果以及课题经费有限、企业方数据信息不开放等原因,导致课题研究浮于表面,结合实际少、深入一线少,大多只进行了入门级技术探索,蜻蜓点水、浅尝辄止,科技成果转化率低。
(4)监管因素。如果说当前人工智能发展引导政策注重正面保障和推动产业实践,那么监督管理则应更多体现在反面的纠偏和督促机制上。假冒“高新技术”企业是人工智能领域的典型问题,为此,科技部、财政部与国家税务局于2016年联合发布了《高新技术企业认定管理办法》,使得没有产业实践就想“冒名顶替”的情况得到遏制。除此之外,对投资资金使用、课题成果验证等方面也要提高监管强度,细化监管措施。
3.重要性和影响
(1)不能错失发展重要窗口期。世界人工智能发展并非一帆风顺,而是经历了提出原理-理解-怀疑-深化-瓶颈-认知的多重阶段,与很多影响人类发展进程的重要技术革命一样,处在螺旋式上升的过程中。当前,正是对人工智能全面深入认知的关键时间节点,而这一节点的显著特征就是产业实践。2015年以来,随着云计算、大数据和物联网等关键软硬件技术的快速发展,极大地推动了各类场景的数字化和信息化,为人工智能进行深入产业实践创造了有利环境,形成发展的重要窗口期,错失这个窗口期,极有可能延误历史机遇,甚至丧失可持续发展的主动权。
(2)影响产业转型升级。我国产业转型升级的重要方向就是在新发展理念统领下,以科技创新为引导,强调调整产业结构和发展方式。人工智能是引领转型的关键抓手和搭建新型供给侧结构的重要一环,如中央提出的军民融合战略,为破解军工产业落后产能与刚需激增的矛盾,迫切需要人工智能企业与军工产业场景深度融合,以智能工业机器人代替人工,实现跨界融合发展。
(3)丧失创新创业活力。全国知名科研院所和高校中,有相当一批科研人员和师生受到大众创业、万众创新的政策鼓舞投身到双创事业中,如果没有产业实践赋予其新动能,将极大地挫伤双创人员的积极性。同时,以人工智能为代表的创新产业,汇集了大量的国有和民间资本,特别是在2018年春季之前的2年左右,数额巨大的创投基金冲入人工智能及其衍生领域,如果一波又一波的人工智能创新企业因无法通过产业实践实现产业应用,而出现违约潮、回购潮,不但激增各类资金的系统风险,也将直接导致一大批创业企业无法盈利而难以生存,社会总成本也将大大增加。