保险公司有望用AI节约成本
据咨询巨头公司埃森哲(Accenture)预测,人工智能可通过简化计费、入院、索赔、质量和合规控制及客户服务等核心功能,在短短18个月内帮助美国保险供应商节省约70亿美元。
Afiniti是一种基于客户和商业私有数据的人类行为微妙模式,采用预测性分析来匹配客户和客服中心运营人员的技术公司。其首席执行官齐亚·奇什蒂(Zia Chishti)表示:很多保险公司都在应用Afiniti的技术来降低客户的死亡率和发病率,包括保险巨头美国联合健康集团(UnitedHealth)。
自2017年以来,Afiniti的医疗客户已累计节省了1.25亿美元的支出。
对于支付方而言,人工智能的潜力在于 “选取用户提出的简单问题,在无需人工参与的情况下提供答案,且具有预测需求的能力。”埃森哲支付业务董事总经理理查德·伯汉泽尔(Richard Birhanzel)表示。
AI成像和诊断能力稳步增长
2018年,人工智能在医疗行业放射和图像分析领域的应用越来越多,几乎可以断定,2019年这一趋势仍将持续。
人工智能对病理学、皮肤病学和放射学等医学图像密集领域的影响是显而易见的。Frost & Sullivan的数据显示,2018年100多个人工智能医疗成像初创企业中,绝大多数的业务都集中在图像分析上,而基于人工智能的医疗成像市场有望在2023年前达到20亿美元。
不过,医疗界对人工智能在分析领域的应用尚有疑虑。在2018年早些时候,IBM Watson的超级电脑未能准确检测出癌症。
专家表示,这项技术发展得太快了,范围也很广。但在特定的诊断领域,人工智能未来仍有着巨大的发展潜力。
例如,Mayo Clinic表示,人工智能与心电图结合,可以成功检测出某类心脏病。2018年10月,Scripps转译医学研究院和人工智能计算公司NVIDIA达成合作,致力于开发深度学习工具,预测心房颤动及分析整个基因组序列。
纪念斯隆-凯特琳癌症中心和斯坦福大学也正在研究机器学习在肿瘤学中的应用。
最近,来自纽约贝丝·以色列医疗中心(Beth Israel Deconess Medicare Centre)和哈佛医学院的研究团队使用深度学习训练人工智能来进行肿瘤诊断。将人工智能与人类病理学结合时,该项目的准确率可达到99.5%。
AI在眼疾领域可实现独立诊断
2018年8月,谷歌宣布其旗下DeepMind人工智能系统向50种眼疾患者推介了准确的眼科转诊,尽管这项技术尚未得到临床批准,但准确率高达94%,与医疗专家的水平相当。
在临床批准方面,IDx-DR已夺得桂冠。2018年4月,该软件成为首个获得美国食品药品监督管理局(Food and Drug Administration,FDA)商业授权的自主人工智能,可用于诊断糖尿病视网膜病变。
自主人工智能会带来深远的影响,尤其是在患者就诊方面。如果很难找到资质较高的医生时,应用该技术,患者可在住所附近的诊所获取准确率超高的诊断和治疗服务。
不过这也有缺陷,人工智能只能用于诊断极特定类型的疾病。病情需要具备典型性,且每次出现的症状得具有相似性。
符合标准的疾病包括青光眼和黄斑变性等。除此之外,多家公司正在探索自主人工智能在胃肠道和皮肤疾病中的适用性。
Doctor Hazel就是一个处于探索阶段的例子。该应用程序于2017年推出,后改名为BlueScan,通过整理图像数据库,诊断划分痣的类型,判断其为良性还是潜在的癌症。
阿布拉莫夫预测道,2019年医疗界将会围绕人工智能作为诊断工具的话题展开更深入的探讨,但他同时强调,自主人工智能并不意味着完全不需要人工干预。
“医生会失误,人工智能同样也会犯错。”阿布拉莫夫表示:“我们正在研究的人工智能仍需在医疗系统背景下运行。”人类和技术是在协同合作。