今年人工智能领域的发展迎来新一波高潮,犹如枝繁叶茂的大树渗透到各行业的蓝天之中,跃跃欲试服务于众多领域。有人欢呼,人工智能商业应用元年已经到来。
2018年,人工智能领域的另一趋势是大额融资频发。
清华大学近日发布的《中国AI发展报告2018》显示,自2013年以来,全球和中国人工智能行业投融资规模都呈上涨趋势。2017年全球人工智能投融资总规模达395亿美元,融资事件1208笔,其中中国的投融资总额达到277.1亿美元,融资事件369笔。中国AI企业融资总额占全球融资总额的70%,融资笔数达31%。
在业界看来,投融资的热情不减,主要是看中人工智能与各行业结合的广阔前景。
然而,有业内人士近日指出,目前国内跟人工智能有关的公司大概有四千多家,但是能够得到投资人青睐或关注,并且愿意投资的,大概不到三分之一。如果没有后续资金投入,很多初创企业有可能难以生存下去。由于人工智能产生收益的时间存在不确定性,巨大繁荣的背后存在隐忧。
那么,什么才是人工智能企业的核心竞争力?对于初创企业来说,如何才能站稳脚跟而不被市场淘汰?直面隐忧,中国人工智能企业的机会何在?
隐忧一:发展结构“头重脚轻”
重点突破基础领域,建立自己的生态体系
早在2015年,谷歌开放其内部使用的机器学习软件TensorFlow源代码,脸书、亚马逊和微软也纷纷发布其工程师用于机器学习的开源软件。似乎AI进入了“免费原材料”时代,人人都可以顺手取材。但是,“国外的开源布局对于我国AI行业发展而言,埋藏着巨大隐患。”远望智库人工智能事业部部长、图灵机器人首席战略官谭茗洲指出。
谭茗洲告诉记者:“开源模式会引导技术方向、路线图,形成开源生态,创造商业模式,这些由发起开源项目的核心利益者掌控,不仅控制行业上层的应用,还控制底层的生态,构建了整个帝国,掌控极大的权利。因此,开源虽是开放的资源,但现在免费并不代表未来不会收费和控制。如安卓系统是一种开源手机操作系统及应用开发平台,而谷歌实际上主导着整个生态的发展。”
谭茗洲认为,若我国企业今后过度依赖目前的AI开源平台,采用大量现成的源代码,仿佛在起跑线上丧失优势,创新及工艺再精深,也是在人家的体系中做零部件的更新改造。“如同温水煮青蛙,今后可能会给行业带来很大影响。这将是最大的隐忧。”他说。
赛迪研究院公布的《2018中国人工智能产业展望》提出,由于我国人工智能产业重应用技术、轻基础理论,底层技术积累薄弱,存在“头重脚轻”的结构不均衡问题,使我国人工智能产业犹如建立在沙滩上的城堡,根基不稳。基层技术积累薄弱使人工智能核心环节受制于人,阻碍重大科技创新,不利于国内企业参与国际竞争。
那么,建立我国自己的AI生态体系,还有机会吗?“当然,”谭茗洲斩钉截铁地答道,“在时间上还来得及,因为国外也才刚刚发展。从国家层面洞悉AI发展态势,重点突破基础领域,针对人工智能底层技术,加强对以深度学习为代表的底层算法模型的深入研究,并积极布局影响人工智能未来发展的前沿基础理论研究。现在国内也有一些小团队在做相关开发项目,有一定潜质,而且我们拥有全世界最多的应用开发者、非常多的应用场景、大体量的市场、蓬勃的创新创业环境等,这些都是国外比不了的。”